# PyTorchTensor
PyTorchTensor(self, raw:'torch.Tensor')
# TensorFlowTensor
TensorFlowTensor(self, raw:'tf.Tensor')
# JAXTensor
JAXTensor(self, raw:'np.ndarray')
# NumPyTensor
NumPyTensor(self, raw:'np.ndarray')
# Tensor
Tensor(self, raw:Any)
Base class defining the common interface of all EagerPy Tensors
# sign
Tensor.sign(self:~TensorType) -> ~TensorType
# sqrt
Tensor.sqrt(self:~TensorType) -> ~TensorType
# inv
Tensor.inv(self:~TensorType) -> ~TensorType
# float32
Tensor.float32(self:~TensorType) -> ~TensorType
# where
Tensor.where(self:~TensorType, x:Union[_ForwardRef('Tensor'), int, float], y:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# matmul
Tensor.matmul(self:~TensorType, other:~TensorType) -> ~TensorType
# ndim
# numpy
Tensor.numpy(self:~TensorType) -> Any
# item
Tensor.item(self:~TensorType) -> Union[int, float]
# shape
# reshape
Tensor.reshape(self:~TensorType, shape:Union[Tuple[int, ...], int]) -> ~TensorType
# take_along_axis
Tensor.take_along_axis(self:~TensorType, index:~TensorType, axis:int) -> ~TensorType
# astype
Tensor.astype(self:~TensorType, dtype:Any) -> ~TensorType
# clip
Tensor.clip(self:~TensorType, min_:float, max_:float) -> ~TensorType
# square
Tensor.square(self:~TensorType) -> ~TensorType
# sin
Tensor.sin(self:~TensorType) -> ~TensorType
# cos
Tensor.cos(self:~TensorType) -> ~TensorType
# tan
Tensor.tan(self:~TensorType) -> ~TensorType
# sinh
Tensor.sinh(self:~TensorType) -> ~TensorType
# cosh
Tensor.cosh(self:~TensorType) -> ~TensorType
# tanh
Tensor.tanh(self:~TensorType) -> ~TensorType
# arcsin
Tensor.arcsin(self:~TensorType) -> ~TensorType
# arccos
Tensor.arccos(self:~TensorType) -> ~TensorType
# arctan
Tensor.arctan(self:~TensorType) -> ~TensorType
# arcsinh
Tensor.arcsinh(self:~TensorType) -> ~TensorType
# arccosh
Tensor.arccosh(self:~TensorType) -> ~TensorType
# arctanh
Tensor.arctanh(self:~TensorType) -> ~TensorType
# sum
Tensor.sum(self:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None, keepdims:bool=False) -> ~TensorType
# prod
Tensor.prod(self:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None, keepdims:bool=False) -> ~TensorType
# mean
Tensor.mean(self:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None, keepdims:bool=False) -> ~TensorType
# min
Tensor.min(self:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None, keepdims:bool=False) -> ~TensorType
# max
Tensor.max(self:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None, keepdims:bool=False) -> ~TensorType
# minimum
Tensor.minimum(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# maximum
Tensor.maximum(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# argmin
Tensor.argmin(self:~TensorType, axis:Union[int, NoneType]=None) -> ~TensorType
# argmax
Tensor.argmax(self:~TensorType, axis:Union[int, NoneType]=None) -> ~TensorType
# argsort
Tensor.argsort(self:~TensorType, axis:int=-1) -> ~TensorType
# topk
Tensor.topk(self:~TensorType, k:int, sorted:bool=True) -> Tuple[~TensorType, ~TensorType]
# uniform
Tensor.uniform(self:~TensorType, shape:Union[Tuple[int, ...], int], low:float=0.0, high:float=1.0) -> ~TensorType
# normal
Tensor.normal(self:~TensorType, shape:Union[Tuple[int, ...], int], mean:float=0.0, stddev:float=1.0) -> ~TensorType
# ones
Tensor.ones(self:~TensorType, shape:Union[Tuple[int, ...], int]) -> ~TensorType
# zeros
Tensor.zeros(self:~TensorType, shape:Union[Tuple[int, ...], int]) -> ~TensorType
# ones_like
Tensor.ones_like(self:~TensorType) -> ~TensorType
# zeros_like
Tensor.zeros_like(self:~TensorType) -> ~TensorType
# full_like
Tensor.full_like(self:~TensorType, fill_value:float) -> ~TensorType
# onehot_like
Tensor.onehot_like(self:~TensorType, indices:~TensorType, *, value:float=1) -> ~TensorType
# from_numpy
Tensor.from_numpy(self:~TensorType, a:Any) -> ~TensorType
# transpose
Tensor.transpose(self:~TensorType, axes:Union[Tuple[int, ...], NoneType]=None) -> ~TensorType
# bool
Tensor.bool(self:~TensorType) -> ~TensorType
# all
Tensor.all(self:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None, keepdims:bool=False) -> ~TensorType
# any
Tensor.any(self:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None, keepdims:bool=False) -> ~TensorType
# logical_and
Tensor.logical_and(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# logical_or
Tensor.logical_or(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# logical_not
Tensor.logical_not(self:~TensorType) -> ~TensorType
# exp
Tensor.exp(self:~TensorType) -> ~TensorType
# log
Tensor.log(self:~TensorType) -> ~TensorType
# log2
Tensor.log2(self:~TensorType) -> ~TensorType
# log10
Tensor.log10(self:~TensorType) -> ~TensorType
# log1p
Tensor.log1p(self:~TensorType) -> ~TensorType
# tile
Tensor.tile(self:~TensorType, multiples:Tuple[int, ...]) -> ~TensorType
# softmax
Tensor.softmax(self:~TensorType, axis:int=-1) -> ~TensorType
# log_softmax
Tensor.log_softmax(self:~TensorType, axis:int=-1) -> ~TensorType
# squeeze
Tensor.squeeze(self:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None) -> ~TensorType
# expand_dims
Tensor.expand_dims(self:~TensorType, axis:int) -> ~TensorType
# full
Tensor.full(self:~TensorType, shape:Union[Tuple[int, ...], int], value:float) -> ~TensorType
# index_update
Tensor.index_update(self:~TensorType, indices:Any, values:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# arange
Tensor.arange(self:~TensorType, start:int, stop:Union[int, NoneType]=None, step:Union[int, NoneType]=None) -> ~TensorType
# cumsum
Tensor.cumsum(self:~TensorType, axis:Union[int, NoneType]=None) -> ~TensorType
# flip
Tensor.flip(self:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None) -> ~TensorType
# meshgrid
Tensor.meshgrid(self:~TensorType, *tensors:~TensorType, indexing:str='xy') -> Tuple[~TensorType, ...]
# pad
Tensor.pad(self:~TensorType, paddings:Tuple[Tuple[int, int], ...], mode:str='constant', value:float=0) -> ~TensorType
# isnan
Tensor.isnan(self:~TensorType) -> ~TensorType
# isinf
Tensor.isinf(self:~TensorType) -> ~TensorType
# crossentropy
Tensor.crossentropy(self:~TensorType, labels:~TensorType) -> ~TensorType
# T
# abs
Tensor.abs(self:~TensorType) -> ~TensorType
# pow
Tensor.pow(self:~TensorType, exponent:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# value_and_grad
Tensor.value_and_grad(self:~TensorType, f:Callable[..., ~TensorType], *args:Any, **kwargs:Any) -> Tuple[~TensorType, ~TensorType]
# value_aux_and_grad
Tensor.value_aux_and_grad(self:~TensorType, f:Callable[..., Tuple[~TensorType, Any]], *args:Any, **kwargs:Any) -> Tuple[~TensorType, Any, ~TensorType]
# flatten
Tensor.flatten(self:~TensorType, start:int=0, end:int=-1) -> ~TensorType
# l0
NormsMethods.l0(x:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None, keepdims:bool=False) -> ~TensorType
# l1
NormsMethods.l1(x:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None, keepdims:bool=False) -> ~TensorType
# l2
NormsMethods.l2(x:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None, keepdims:bool=False) -> ~TensorType
# linf
NormsMethods.linf(x:~TensorType, axis:Union[int, Tuple[int, ...], NoneType]=None, keepdims:bool=False) -> ~TensorType
# lp
NormsMethods.lp(x:~TensorType, p:Union[int, float], axis:Union[int, Tuple[int, ...], NoneType]=None, keepdims:bool=False) -> ~TensorType
# raw
# dtype
# init
Tensor.__init__(self, raw:Any)
# repr
Tensor.__repr__(self:~TensorType) -> str
# format
Tensor.__format__(self:~TensorType, format_spec:str) -> str
# getitem
Tensor.__getitem__(self:~TensorType, index:Any) -> ~TensorType
# iter
Tensor.__iter__(self:~TensorType) -> Iterator[~TensorType]
# bool
Tensor.__bool__(self:~TensorType) -> bool
# len
Tensor.__len__(self:~TensorType) -> int
# abs
Tensor.__abs__(self:~TensorType) -> ~TensorType
# neg
Tensor.__neg__(self:~TensorType) -> ~TensorType
# add
Tensor.__add__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# radd
Tensor.__radd__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# sub
Tensor.__sub__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# rsub
Tensor.__rsub__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# mul
Tensor.__mul__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# rmul
Tensor.__rmul__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# truediv
Tensor.__truediv__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# rtruediv
Tensor.__rtruediv__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# floordiv
Tensor.__floordiv__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# rfloordiv
Tensor.__rfloordiv__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# mod
Tensor.__mod__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# lt
Tensor.__lt__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# le
Tensor.__le__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# eq
Tensor.__eq__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# ne
Tensor.__ne__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# gt
Tensor.__gt__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# ge
Tensor.__ge__(self:~TensorType, other:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType
# pow
Tensor.__pow__(self:~TensorType, exponent:Union[_ForwardRef('Tensor'), int, float]) -> ~TensorType