# Examples 🎉
# A framework-agnostic norm
function
Write your function using EagerPy:
import eagerpy as ep
def norm(x):
x = ep.astensor(x)
result = x.square().sum().sqrt()
return result.raw
You can now use the norm
function with native tensors and arrays from PyTorch, TensorFlow, JAX and NumPy with virtually no overhead compared to native code. Of course, it also works with GPU tensors.
import torch
norm(torch.tensor([1., 2., 3.]))
# tensor(3.7417)
import tensorflow as tf
norm(tf.constant([1., 2., 3.]))
# <tf.Tensor: shape=(), dtype=float32, numpy=3.7416575>
import jax.numpy as np
norm(np.array([1., 2., 3.]))
# DeviceArray(3.7416575, dtype=float32)
import numpy as np
norm(np.array([1., 2., 3.]))
# 3.7416573867739413
NOTE
EagerPy already comes with a builtin implementation of norm
.